skip to main content


Search for: All records

Creators/Authors contains: "Shusterman, Anna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Research has shown a link between the acquisition of numerical concepts and language, but exactly how linguistic input matters for numerical development remains unclear. Here, we examine both symbolic (number word knowledge) and non-symbolic (numerical discrimination) numerical abilities in a population in which access to language is limited early in development—oral deaf and hard of hearing (DHH) preschoolers born to hearing parents who do not know a sign language. The oral DHH children demonstrated lower numerical discrimination skills, verbal number knowledge, conceptual understanding of the word “more”, and vocabulary relative to their hearing peers. Importantly, however, analyses revealed that group differences in the numerical tasks, but not vocabulary, disappeared when differences in the amount of time children had had auditory access to spoken language input via hearing technology were taken into account. Results offer insights regarding the role language plays in emerging number concepts.

     
    more » « less
  2. Abstract We agree that the approximate number system (ANS) truly represents number. We endorse the authors' conclusions on the arguments from confounds, congruency, and imprecision, although we disagree with many claims along the way. Here, we discuss some complications with the meanings that undergird theories in numerical cognition, and with the language we use to communicate those theories. 
    more » « less
  3. Abstract

    Most deaf and hard‐of‐hearing (DHH) children are born to hearing parents and steered toward spoken rather than signed language, introducing a delay in language access. This study investigated the effects of this delay on number acquisition. DHH children (N = 44, meanage = 58 months, 21F, >50% White) and typically‐hearing (TH) children (N = 79, meanage = 49 months, 51F, >50% White) were assessed on number and language in 2011–13. DHH children showed similar trajectories to TH children but delayed timing; a binary logistic regression showed that the odds of being a cardinal‐principle (CP) knower were 17 times higher for TH children than DHH children, controlling for age (d = .69). Language fully mediated the association between deaf/hearing group and number knowledge, suggesting that language access sets the pace for number acquisition.

     
    more » « less
  4. Abstract

    Studies on children's understanding of counting examine when and how children acquire the cardinal principle: the idea that the last word in a counted set reflects the cardinal value of the set. Using Wynn's (1990) Give‐N Task, researchers classify children who can count to generate large sets as having acquired the cardinal principle (cardinal‐principle‐knowers) and those who cannot as lacking knowledge of it (subset‐knowers). However, recent studies have provided a more nuanced view of number word acquisition. Here, we explore this view by examining the developmental progression of the counting principles with an aim to elucidate the gradual elements that lead to children successfully generating sets and being classified as CP‐knowers on the Give‐N Task. Specifically, we test the claim that subset‐knowers lack cardinal principle knowledge by separating children's understanding of the cardinal principle from their ability to apply and implement counting procedures. We also ask when knowledge of Gelman & Gallistel's (1978) other how‐to‐count principles emerge in development. We analyzed how often children violated the three how‐to‐count principles in a secondary analysis of Give‐N data (N = 86). We found that children already have knowledge of the cardinal principle prior to becoming CP‐knowers, and that understanding of the stable‐order and word‐object correspondence principles likely emerged earlier. These results suggest that gradual development may best characterize children's acquisition of the counting principles and that learning to coordinate all three principles represents an additional step beyond learning them individually.

     
    more » « less
  5. Abstract

    Children's early math skills have been hailed as a powerful predictor of academic success. Disparities in socioeconomic context, however, also have dramatic consequences on children's learning. It is therefore critical to investigate both of these distinct contributors in order to better understand the early foundations of children's academic outcomes. This study tests an integrated model of children's developing math ability so as to (1) identify the specific skills and abilities most clearly linked to early math achievement and (2) measure the influence of children's socioeconomic context on each of these skills. We first evaluated the early vocabulary, number word knowledge (knower level), and Approximate Number System (ANS) acuity of a diverse group of preschoolers. Then, approximately 1 year later as they entered Kindergarten, we administered a test of early math achievement. We find that children's early language (general vocabulary and number word knowledge) fully mediates the relationship between parent education and math ability. Additionally, number word knowledge mediates the relationship betweenANSacuity and early math. We argue that increased focus on number word knowledge, as well as general vocabulary, may help to minimize disparities in math ability as children enter kindergarten. We also highlight the role of parent education on children's learning and note that this may be an important locus for intervention.

     
    more » « less